

A Quick Guide to University Software Program

July 2025

		3	Synopsys Learning Center	16
1	About SARA3		Access Synopsys Learning Center	
	What is SARA? Who We Help?		University Curriculum Synopsys Learning Paths	
	University Software Program Membership Benefits	4	Curriculum IC Decima Curriculum / FDA Curriculum	20
2	SolvNetPlus 7		IC Design Curriculum / EDA Curriculum Advanced Courses / General Courses How To Find The Courses?	
	SolvNetPlus Application Log-in to SolvNetPlus	5	Libraries, PDKS, and Memory Compiler	24
	Get Started Key Features - Documents, Training, Search Bar		Generic Libraries (EDK) Interoperable Process Design Kits (iPDKs) Synopsys Generic Memory Compiler	

About SARA

What is Synopsys Academic & Research Alliances (SARA)?

SYNOPSYS Academic & Research Alliances

Education for Smart, Secure Everything

Through innovative collaborations, shared programs, and access to advanced technologies, Synopsys Academic & Research Alliances (SARA) is dedicated to furthering university research and education in the field of electronic design.

By investing in science, technology, engineering, and mathematics (STEM) education, we aim to nurture the interests and skills that are needed to bring the next generation of engineers into the workforce and the research labs.

Provide learning opportunities and training material while lowering the barriers to access Synopsys technology for education and research.

Empower and educate the next generation of engineers to be ready to tackle the lates challenges, whether in research or in industry.

Address the ever-evolving challenges of the semiconductor industry, uncover new solutions, and pave the path toward future technologies.

Collaborate to discover new technologies and turn fresh ideas into market-ready products for our Smart Everything world.

UNIVERSITY SOFTWARE PROGRAM MEMBERSHIP BENEFITS

SolvNetPlus

A repository of self-help resources to resolve many support issues, provide access to training, and many educational materials.

<u>Curriculum</u>

Synopsys offers universities complete curricula for Bachelor's and Master's programs in IC design and EDA development, with each course spanning 15 weeks and including syllabus, lectures, labs, assignments, and exams.

Reference Methodology Retrieval System

RMgen provides an easy way to configure and download product-specific and release-specific reference methodology scripts. These scripts are a starting point for developing product-specific flow scripts. Customize the scripts to work in your design environment.

Synopsys Learning Center

Synopsys Learning Center offers a wide range of courses (short training, instructor led, quick tips) in different delivery modes and allows easier navigation and a more personalized learning experience, all while using your SolvNetPlus credentials.

Libraries, PDKS, and Memory Compiler

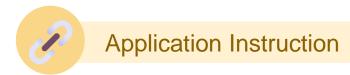
Teaching resources are offered to ensure students gain valuable experience using a complete design flow and to master advanced design methods such as low power and analog / mixed signal.

SYNOPSYS* | SolvNetPlus

SolvNetPlus provides Documentation,
Training, and a comprehensive, searchable
knowledge base that provides solutions to
frequently encountered problems

SOLVNETPLUS APPLICATION

LOG-IN TO SOLVNETPLUS

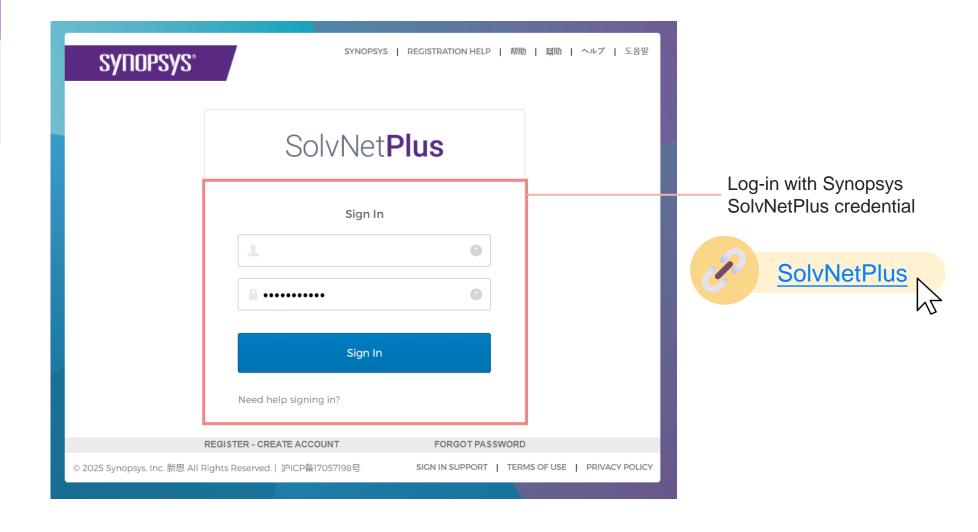

GET STARTED

KEY FEATURES

SolvNetPlus Application

SolvNetPlus Application Steps:

- Professors must first apply for TSRI 2025 membership.
- →Request Synopsys software tools on TSRI website and sign the software usage agreement https://www.tsri.org.tw/tw/commonPage.jsp?kindld=D0009
- After students filling out the application form, professors have to sign at the Approval section at the bottom of the form.
 - →Students have to scan and email it back to <u>sara-tw@synopsys.com</u> along with any electronic files for reviewed and verification by Synopsys
- Once approved by Synopsys University Program, a confirmation email will be sent to both professors and students, providing SolvNetPlus account login instructions.


Application Form

SOLVNETPLUS APPLICATION

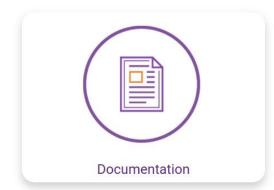
LOG-IN TO SOLVNETPLUS

GET STARTED

KEY FEATURES

SOLVNETPLUS APPLICATION

LOG-IN TO SOLVNETPLUS


GET STARTED

KEY FEATURES

Knowledge-based users can access Documentation Training & Search; but **CANNOT** access Download, EFT, Cases & STARs.

Welcome to the Synopsys Support Community!

SOLVNETPLUS APPLICATION

LOG-IN TO SOLVNETPLUS

GET STARTED

KEY FEATURES

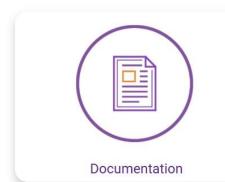
SolvNetPlus FAQs

SolvNetPlus Getting Started

SolvNetPlus New Feature Introduction

SolvNetPlus Demo Video

SolvNetPlus Usage Help Resources


By clicking on the help interface, you can access tutorials for using SolvNetPlus and various assistance needed during usage.

For questions or feedback about SolvNetPlus website.

Welcome to the Synopsys Support Community!

SYNOPSYS* | SolvNetPlus

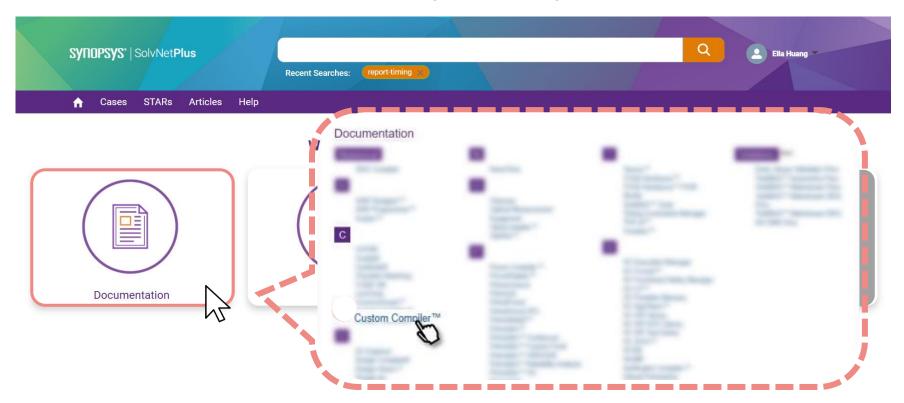
Articles Help

SOLVNETPLUS APPLICATION

LOG-IN TO SOLVNETPLUS

GET STARTED

KEY FEATURES ∇


DOCUMENTATION

TRAINING

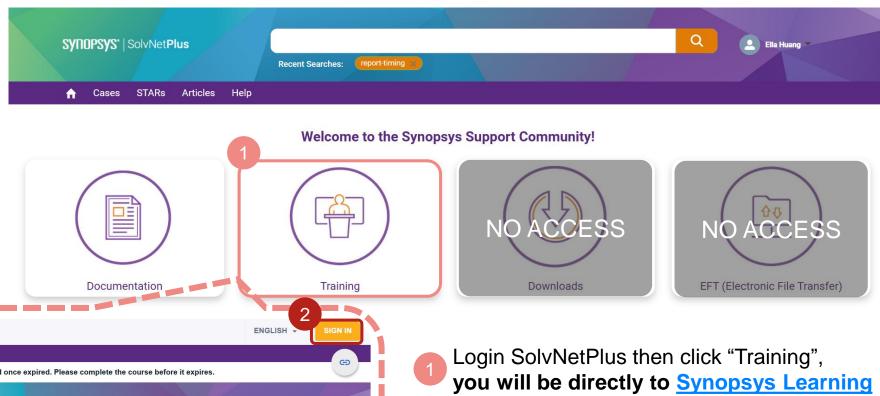
SEARCH BAR

Documentation

Contains product release notes, installation guides, user guides & reference manuals

Search by product name to get tool documents. You can download release notes, installation guides, user guides, and reference manuals from this section.

KEY FEATURES ∇

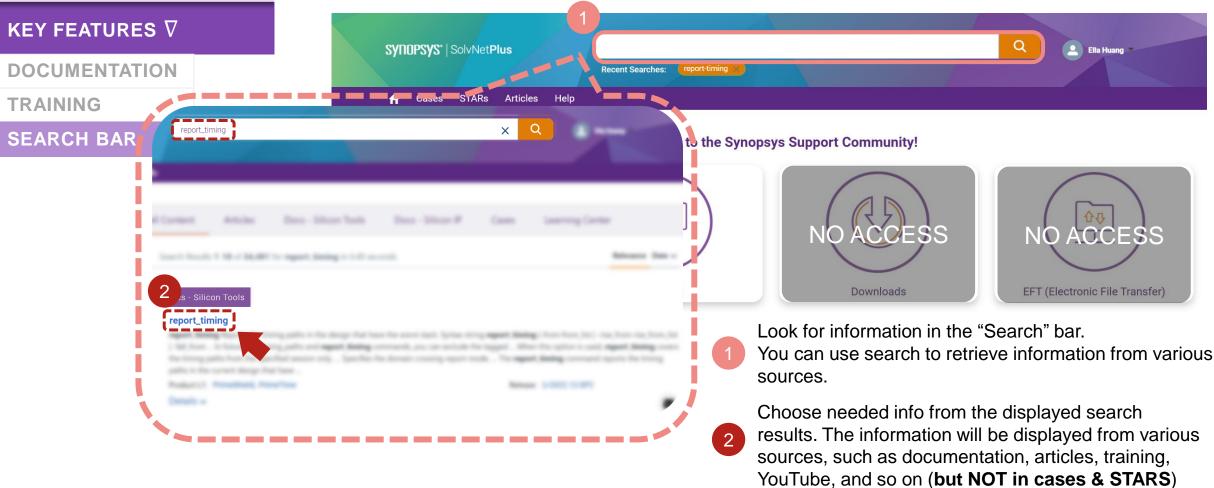

DOCUMENTATION

TRAINING

SEARCH BAR

Training

Access Synopsys Learning Center for free self-paced training resources



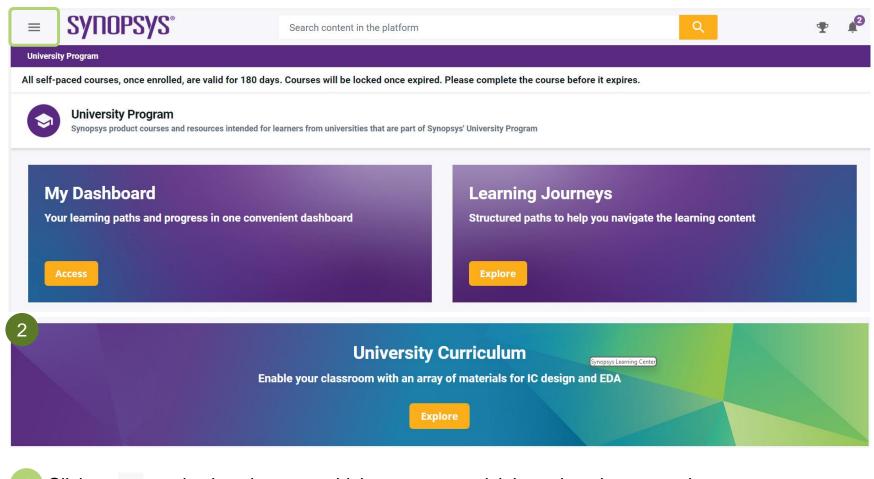
- Center
- Click the "SIGN IN" at the right top corner
- 3 SSO Login Via SolvNet Account

SolvNetPlus KEY FEATURES ∇ **DOCUMENTATION TRAINING** report_timing **SEARCH BAR**

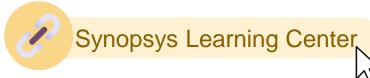
Search Bar

Provides an advanced search engine to retrieve information from various sources, such as documentation, articles, training, and so on.

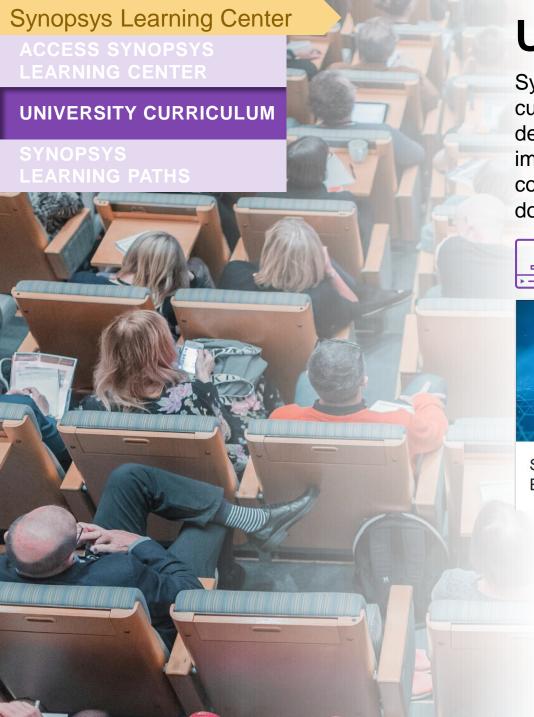
Synopsys Learning Center



Synopsys Learning Center


ACCESS SYNOPSYS LEARNING CENTER

SYNOPSYS° Sign out ⊖ EH Ella Huano University Program ♠ Synopsys Learning Center My Dashboard My Activities All Self-Paced Courses Instructor-Led Training


Access the Synopsys Learning Center

- Click on , and select the page which you want to visit based on the categories
- 2 Choose the "University Curriculum"

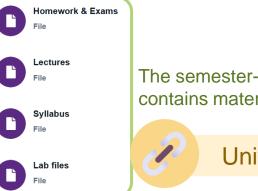
Cookie policy

University Curriculum

Synopsys provides universities with access to a comprehensive curriculum for Bachelor and Master Programs in microelectronic design and EDA development. Course materials can be used to implement a new course or to supplement content in an existing course. Search courses by keyword or course type to find and download courses quickly and easily.

Types of Learning: E-Learning

Synopsys EDA Tool Flow for Front-End Digital IC Design


Course description

The goal of the course is to study details of Front-End EDA Tools for digital IC design. It covers steps from logic simulation to

The course program on Front-End EDA Tools is assigned for postgraduate education of IC Design specialization.

To benefit the most from the material presented in this course, be sure that the following courses had been studied in advance

Understanding of the course is the basis for further specialized subjects destined by the educational plan of IC Design

The semester-length course contains material

University Curriculum

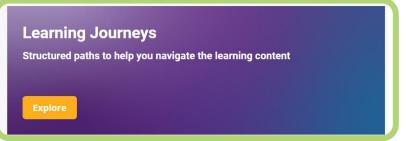
Synopsys Learning Center


ACCESS SYNOPSYS LEARNING CENTER

UNIVERSITY CURRICULUM

SYNOPSYS LEARNING PATHS

Synopsys Learning Paths


▼ Recommended for an Analog Designer

My Dashboard

Your learning paths and progress in one convenient dashboard

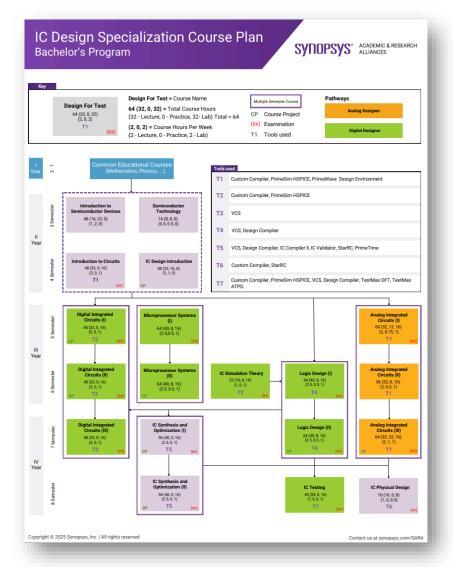
Access

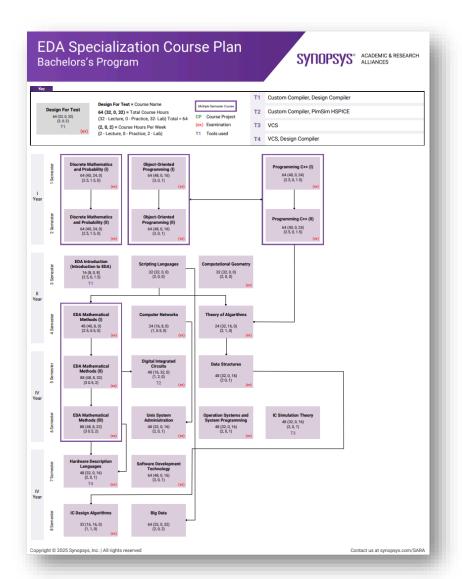
Learning Paths are available on Synopsys Learning Center

→Learning Journeys

Curriculum

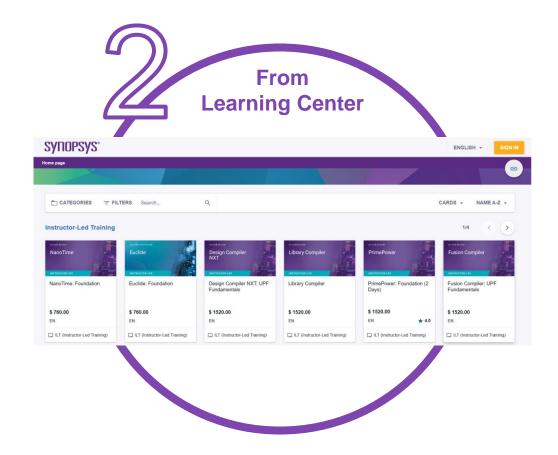
IC Design Curriculum / EDA Curriculum


	IC Design Curriculum
Bachelor Degree Courses	 Introduction to Semiconductor Devices Introduction to Circuits IC Design Introduction Digital Integrated Circuits Semiconductor Technology Analog Integrated Circuits Microprocessor Systems IC Simulation Theory Logic Design IC Synthesis and Optimization IC Physical Design IC Testing
Master Degree Courses	 Mixed-Signal IC Design FPGA Prototyping I/O Design Design for Test Low Power Design Design of Embedded Systems Rad-hard IC Design RF IC Design Crosstalk and Noise Modeling and Optimization of IC Interconnects IC Reliability IC Physical Design Algorithms


EDA Curriculum								
Bachelor Degree Courses	 EDA Introduction Discrete Mathematics and Probability EDA Mathematical Methods Programming C++ Hardware Description Languages Theory of Algorithms Object-Oriented Programming Operating Systems and System Programming Scripting Languages Software Development Technology Computational Data Structures Unix System Administration Technical Writing 							
Master Degree Courses	 Linear Algebra Big Data Contemporary Software Development Kits EDA Tools IC Physical Design Algorithms Compilers Design Digital Signal Processing Numerical Methods Probability theory and Mathematical Statistics Databases Operational Research IC Verification Algorithms 							

Advanced Courses / General Courses

	Advanced Courses	General Courses		
Bachelor Degree Courses	 Analog and Mixed-Signal IC Physical Design Custom Analog Design Flow Tutorial Statistical Techniques for Timing Analysis: Current State and Trends Thermal and Electro-Thermal Simulation: Achievements and Trends Signal and Power Integrity: Current State and New Approaches Verification Methodologies for Low Power Characterization with SiliconSmart Signal Processing and Systems Theory High Speed SerDes Design 	 Numerical and Logic Bases of Digital Circuits Electrotechnical Bases of Electronic Circuits Chip Design Static Timing Analysis IC Fabrication Fundamentals of Telecommunications Introduction to RF Communication RF Circuits Applied Probability Python Tool Command Language (TCL) Programming Languages and Compilers Verilog Computer Archite Engineering Algorithms and St Programming IC Schematic Design Introduction to All User Interface Designaming How to Create an PDK Physical Verification Physical Verification Povelopment 	ement System ign Algorithms lgorithms esign esed Embedded Interoperable	
Degree Courses	 High Speed SerDes Design Synopsys EDA Tool Flow for Back-End Digital IC Design Synopsys EDA Tool Flow for Front-End Digital IC Design IC Synthesis and Optimization with Fusion Compiler Advanced Methods in Logic Synthesis and Equivalence Checking Low Power Design with SAED 14nm EDK Low Power Methodology Manual for 14nm Memory PHY and DRAM Soft IP Development Universal Verification Methodology Analog Modeling with Verilog-A 	 Fuzzy Logic LINUX System and Network Administration IC Design Flow Synopsys Design Flow Tutorial IC Design for Thermal Issues SystemVerilog Operational Calculus Optimization Methods Complex Functions Fourier Transformations Computer Language Engineering Design of Programming Languages IC Design Algorithms Compiler Optimization and Code Generation 		


IC Design and EDA Course Plans

How to Find the Courses?

- Type the name of the course you want to search for in the search bar
- Get the search results

Directly access Synopsys Learning Center to find the courses

Libraries, PDKs, and Memory Compiler

Generic Libraries (EDK)

Enable to master advanced design methods for low power, IoT, and automotive applications using the latest Synopsys EDA tools.

Interoperable PDKs

Enable to master the design of analog and mixed-signal ICs and Ips using the latest Synopsys Custom Implementation tools. Each PDK includes documentation and design infrastructure elements.

Generic Memory Compiler

Available for academic use when custom tailoring memory circuits for specific design needs.

Reference Methodology Retrieval System

Rmgen provides an easy way to configure and download product-specific and release-specific reference methodology scripts. These are a starting point for developing product-specific flow scripts. Customize the scripts to work in your design environment.

These resources are accessible only to authorized users.
For further inquiries, please contact

sara-tw@synopsys.com

