SYNOPSYS[®]

A Quick Guide to University Software Program

Courseware, SolvNetPlus & Synopsys Learning Center

February 2024

	N^{-}		

1	About SARA	3
2	SolvNetPlus	7
3	Synopsys Learning Center	14
4	Curriculum	18
5	Libraries, PDKS, and Memory Compiler	22

About SARA

What is Synopsys Academic & Research Alliances (SARA)?

Through innovative collaborations, shared programs, and access to advanced technologies, Synopsys Academic & Research Alliances (SARA) is dedicated to furthering university research and education in the field of electronic design.

By investing in science, technology, engineering, and mathematics (STEM) education, we aim to nurture the interests and skills that are needed to bring the next generation of engineers into the workforce and the research labs.

Who we help

Student

Empower and educate the next generation of engineers to be ready to tackle the latest challenges, whether in research or in industry.

Educator

Provide learning opportunities and training materials while lowering the barriers to access Synopsys technology for education and research.

Researchers

Address the ever-evolving challenges of the semiconductor industry, uncover new solutions, and pave the path toward future technologies.

Entrepreneurs

Collaborate to discover new technologies and turn fresh ideas into market-ready products for our Smart Everything world.

University Software Program Membership Benefits

SolvNetPlus

A repository of self-help resources to resolve many support issues, provide access to training, and many educational materials.

Synopsys Learning Center

Synopsys Learning Center offers a wide range of courses (short training, instructor led, quick tips) in different delivery modes and allows easier navigation and a more personalized learning experience, all while using your SolvNetPlus credentials.

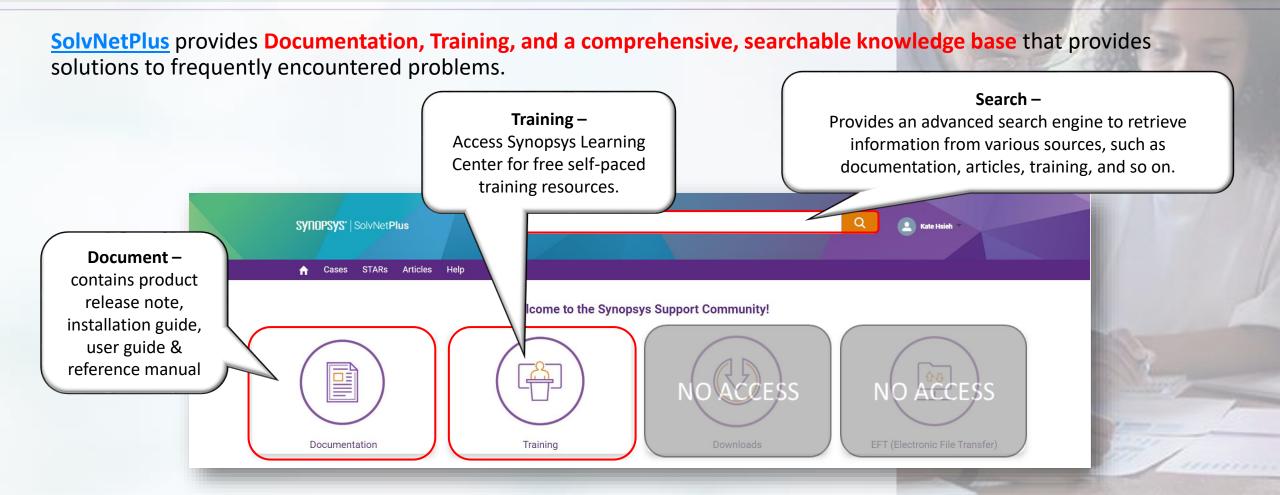
Curriculum

Semester-length course contains material including syllabus, lectures, labs, homework, and exams.

Synopsys tools are applied in the labs for a thorough and practical understanding of theoretical concepts introduced in each course.

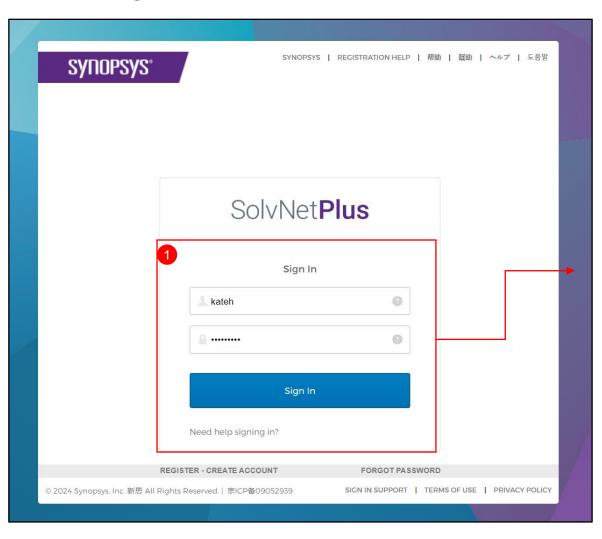
Libraries, PDKS, and Memory Compiler

Teaching resources are offered to ensure students gain valuable experience using a complete design flow and to master advanced design methods such as low power and analog/mixed signal.



Reference Methodology Retrieval System

RMgen provides an easy way to configure and download product-specific and release-specific reference methodology scripts. These scripts are a starting point for developing product-specific flow scripts. Customize the scripts to work in your design environment.


What is SolvNetPlus?

Log-in to SolvNetPlus Get started

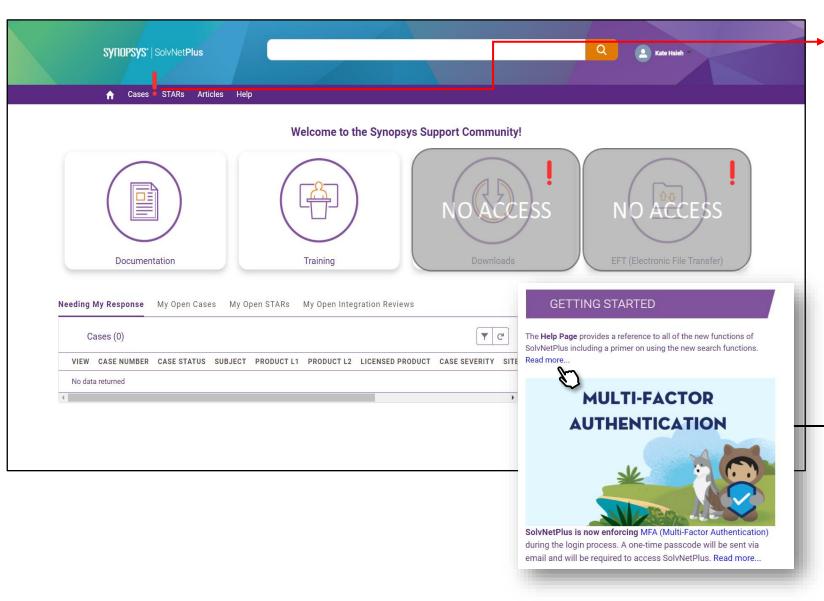
Key features

Log-in to SolvNetPlus

Log-in with Synopsys SolvNetPlus credential

Link:

https://solvnetplus.synopsys.com/s/


Log-in to SolvNetPlus

Get started

Key features

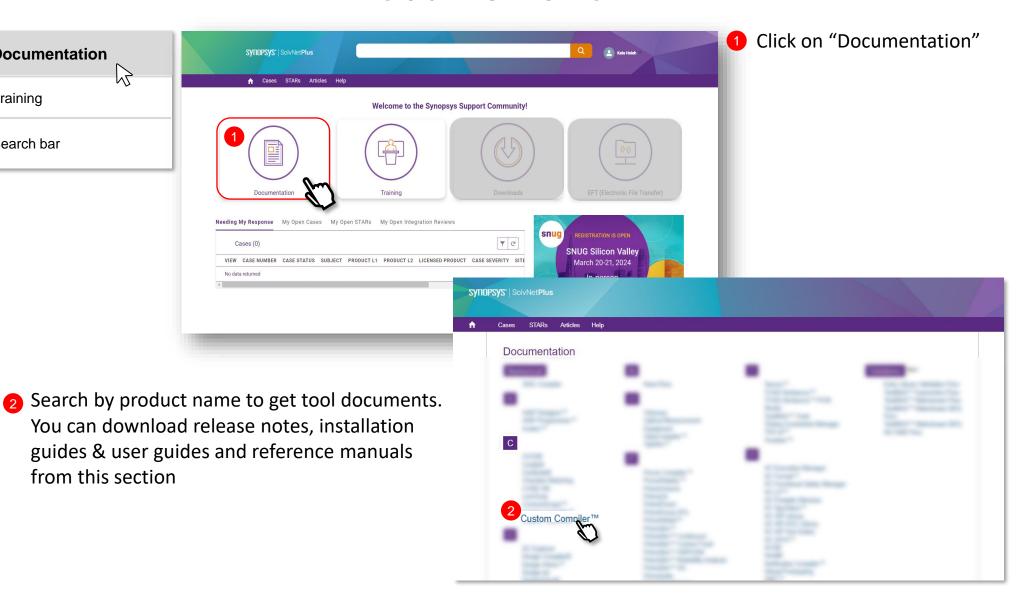
Get started

University users can access
Documentation,
Training & Search; but
CANNOT access
Download, EFT, Cases
& STARs.

Read "GETTING STARTED" before use

Log-in to SolvNetPlus

Documentation


Training

Search bar

Get started

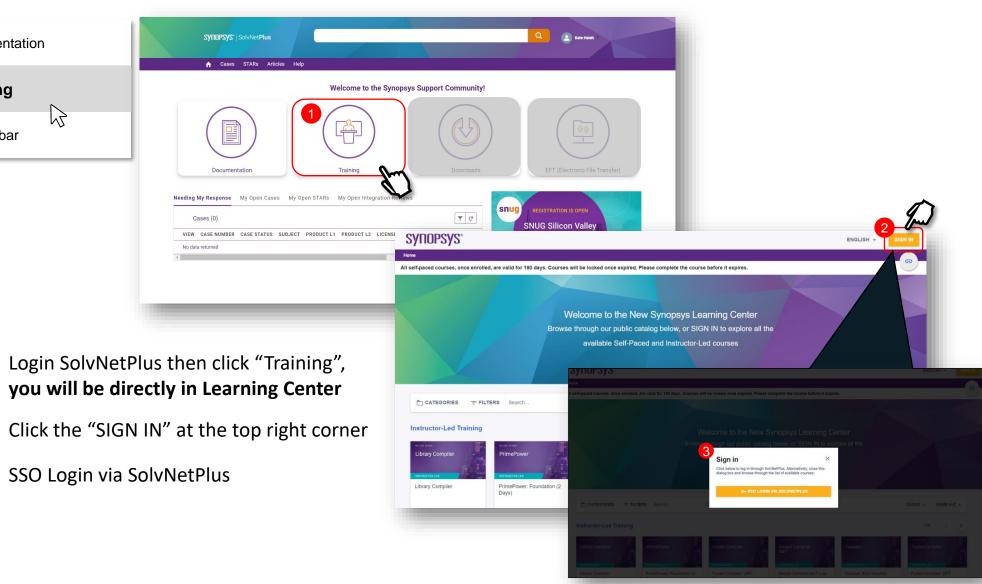
Key features

Documentation

Get started w/ SolvNetPlus

Documentation

7

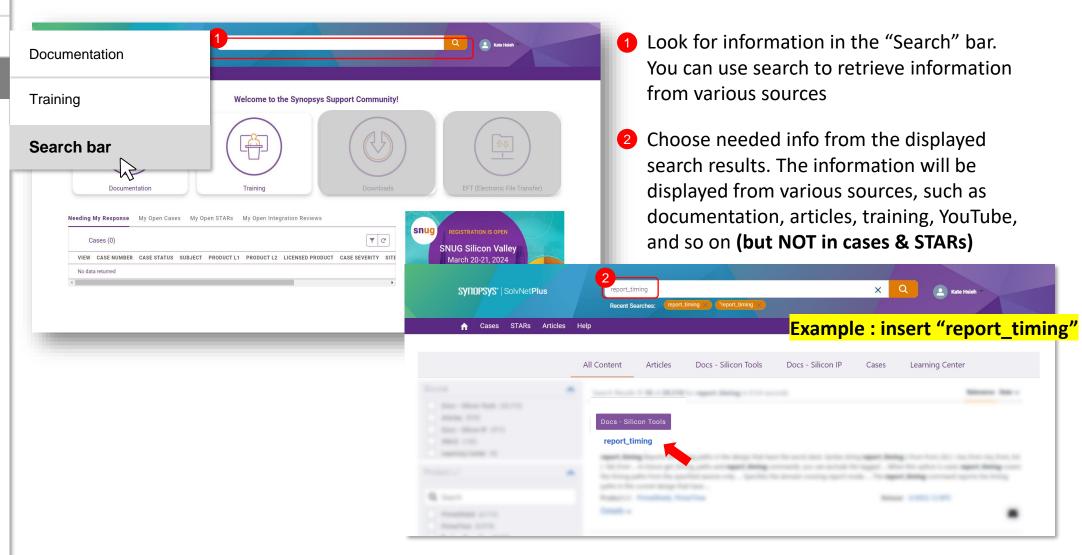

Training

Search bar

Notice

Key features

Training

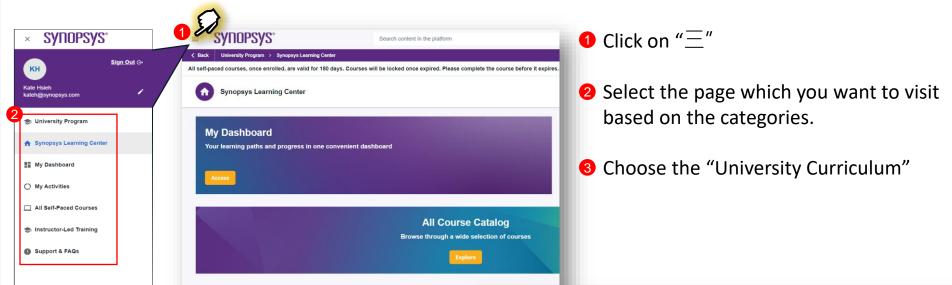


Get started w/ SolvNetPlus

Notice

Key features

Search bar

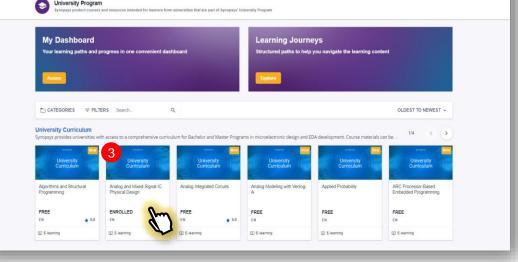

Cookie policy

Access Synopsys Learning Center

University Curriculum

Synopsys Learning Paths

Access Synopsys Learning Center



■ SYNOPSYS*

Link: Synopsys Learning Center

CATEGORIES = FILTERS Search.

Self-Paced Courses

Access Synopsys Learning Center

University Curriculum

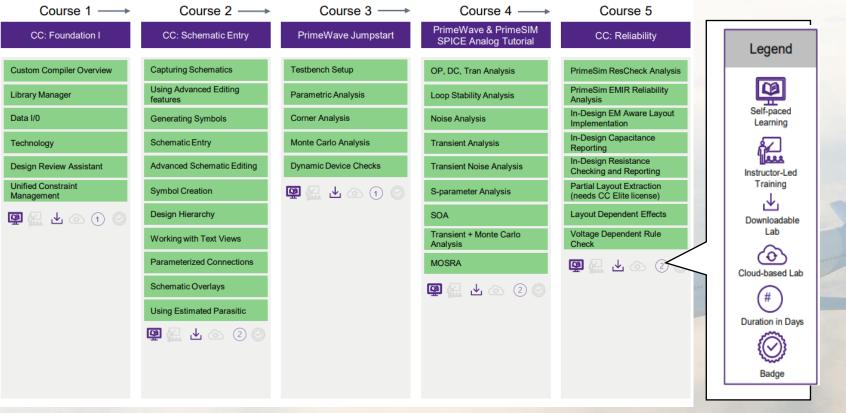
Synopsys Learning Paths

University Curriculum

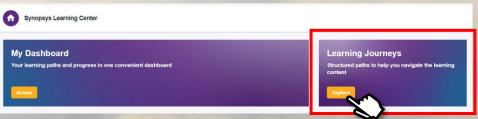
Synopsys provides universities with access to a comprehensive curriculum for Bachelor and Master Programs in microelectronic design and EDA development. Course materials can be used to implement a new course or to supplement content in an existing course. Search courses by keyword or course type to find and download courses quickly and easily.

Types of Learning - E-learning

Access Synopsys Learning Center


Types of Learning

Synopsys Learning Paths



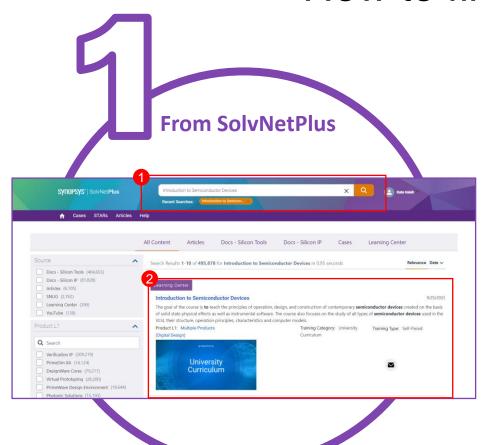
Synopsys Learning Paths

▼ Recommended for an Analog Designer

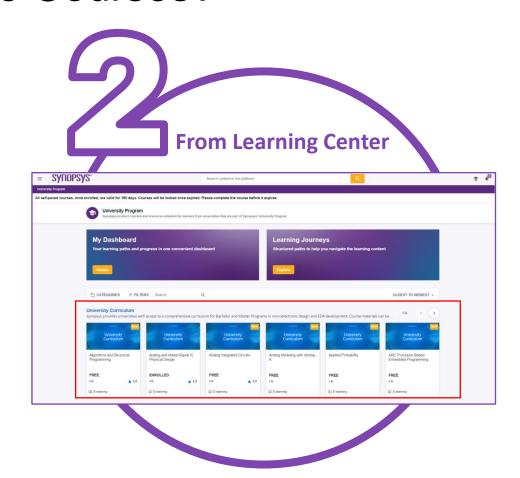
Learning Paths are available on Synopsys Learning Center > Learning Journeys

² Curriculum

IC Design Curriculum/EDA Curriculum


IC Design Curriculum				
Bachelor Degree Courses	 Introduction to Semiconductor Devices Introduction to Circuits IC Design Introduction Digital Integrated Circuits Semiconductor Technology Analog Integrated Circuits Microprocessor Systems IC Simulation Theory Logic Design IC Synthesis and Optimization IC Physical Design IC Testing 			
Master Degree Courses	 Mixed-Signal IC Design FPGA Prototyping I/O Design Design for Test Low Power Design Design of Embedded Systems Rad-hard IC Design RF IC Design Crosstalk and Noise Modeling and Optimization of IC Interconnects IC Reliability IC Physical Design Algorithms 			

EDA Curriculum				
Bachelor Degree Courses	 EDA Introduction Discrete Mathematics and Probability EDA Mathematical Methods Programming C++ Hardware Description Languages Theory of Algorithms Object-Oriented Programming Operating Systems and System Programming Scripting Languages Software Development Technology Computational Geometry Data Structures Unix System Administration Technical Writing 			
Master Degree Courses	 Linear Algebra Big Data Contemporary Software Development Kits EDA Tools IC Physical Design Algorithms Compilers Design Digital Signal Processing Numerical Methods Probability Theory and Mathematical Statistics Databases Operational Research IC Verification Algorithms 			


Advanced Courses/General Courses

	Advanced Courses	General Courses
Bachelor Degree Courses Master	 Analog and Mixed-Signal IC Physical Design Custom Analog Design Flow Tutorial Statistical Techniques for Timing Analysis: Current State and Trends Thermal and Electro-Thermal Simulation: Achievements and Trends Signal and Power Integrity: Current State and New Approaches Verification Methodologies for Low Power Characterization with SiliconSmart Signal Processing and Systems Theory High Speed SerDes Design 	 Numerical and Logic Bases of Digital Circuits Electrotechnical Bases of Electronic Circuits Chip Design Static Timing Analysis IC Fabrication Fundamentals of Telecommunications Introduction to RF Communication RF Circuits Applied Probability Python Tool Command Language (TCL) Scripting Languages for Beginners Programming Languages and Compilers Verilog Computer Architecture and Engineering Algorithms and Structural Programming Database Management System IC Schematic Design Algorithms User Interface Design ARC Processor-Based Embedded Programming How to Create an Interoperable PDK Physical Verification Runset Development
Degree Courses	 Synopsys EDA Tool Flow for Back-End Digital IC Design Synopsys EDA Tool Flow for Front-End Digital IC Design IC Synthesis and Optimization with Fusion Compiler Advanced Methods in Logic Synthesis and Equivalence Checking Low Power Design with SAED 14nm EDK Low Power Methodology Manual for 14nm Memory PHY and DRAM Soft IP Development Universal Verification Methodology Analog Modeling with Verilog-A 	 Fuzzy Logic LINUX System and Network Administration Master IC Design Flow Synopsys Design Flow Tutorial IC Design for Thermal Issues SystemVerilog Operational Calculus Optimization Methods Complex Functions Fourier Transformations Computer Language Engineering Design of Programming Languages IC Design Algorithms Compiler Optimization and Code Generation

How to find the Courses?

- 1 Type the name of the course you want to search for in the search bar
- **2** Get the search results

Directly access <u>Synopsys Learning</u> <u>Center</u> to find the courses.

Libraries, PDKS, and Memory Compiler

Libraries, PDKS, and Memory Compiler

Generic Libraries (EDK)

Interoperable Process Design Kits (iPDKs)

Synopsys Generic Memory Compiler

Generic Libraries (EDK)

- 14nm, 32/28nm and 90nm
- Enables students to master advanced design methods using the latest Synopsys EDA tools
- Includes:

Digital Standard Cell Library

I/O Cell Library

I/O Special Cell Library

Embedded Memories

Phase Locked Loop

Low Power Memories

Reference Designs

• Used by Synopsys for:

Curricula Development

To support development of laboratory works and course projects.

Customer Education

To train customers with Leon3 and ORCA processors' design.

Global Technical Services

To train internal staff and customers on Synopsys tools and low power flows.

Application Consultants

To develop and test sample designs and Reference Methodology scripts.

Generic Libraries (EDK)

Interoperable Process Design Kits (iPDKs)

Synopsys Generic Memory Compiler

Interoperable Process Design Kits (iPDKs)

- 32/28nm and 90nm
- Enables students to master AMS/Custom design with the Synopsys custom implementation tool suite
- Includes:

Technology Files

Parasitic Extraction Files

Symbol Library and Python PCells

Embedded Memories

Physical Verification Files

HSPICE Models

Callback Scripts

Setup Files

• Used by Synopsys for:

Curricula Development

To support development of laboratory works and course projects.

Customer Education

To train customers with Leon3 and ORCA processors' design.

Global Technical Services

To train internal staff and customers on Synopsys tools and low power flows.

Application Consultants

To develop and test sample designs and Reference Methodology scripts.

Libraries, PDKS, and Memory Compiler

Generic Libraries (EDK)

Interoperable Process Design Kits (iPDKs)

Synopsys Generic Memory Compiler

Synopsys Generic Memory Compiler

- Configurable software that automatically generates static RAM circuits of different types and sizes with all required deliverables
- Generate custom memory instances for educational ICs
- Designed for use with Synopsys EDKs and EDA tools
- Optimized for the Synopsys Digital Design Flow
- Supports multiple technologies (90nm, 32/28nm, etc.)

User interface

- Command line
- GUI

Supported memory types

- 1 port SRAM
- 2 port SRAM
- 1 port Low Power SRAM
- 2 port Low Power SRAM

"Using the Synopsys Generic Memory Compiler in our complex processor for DSP application was a **great time-saving tool**. It helped the students generate the SRAM they wanted in a snap, saving them critical time to concentrate on the rest of the complex design."

Dr. Maged Ghoneima, American University in Cairo

SYNOPSYS®

Thank You

Synopsys Academic & Research Alliances (SARA) Taiwan

Contact us

